SiC Solutions for Industrial and Automotive Applications

03. December 2019
Dr. –Ing. Ignacio Lizama
Field Application Engineer
Agenda

1. Package line-up extension & advantage of driving sense packages

2. Comparison of 40mΩ 1200V SiC MOSFETs in TO-247 / TO-247-4L / TO-263-7L
 • Switching waveforms
 • Switching losses
 • Further switching characteristics

3. Application example: Totem Pole and Power supply

4. Summary
ROHM SiC device development

- 19 years of experience
- Fully integrated production system

- Started SiC R&D
- Acquired SiCrystal SiC substrate
- SiC SBD / MOS mass production
- Full SiC Module mass production
- World’s first Trench SiC MOS mass production
- 6 inch SiC SBD mass production

• 19 years of experience
• Fully integrated production system

© 2019 ROHM Semiconductor GmbH
Integrated In-House Manufacturing System

Substrate

Device

Package

Fully Integrated Production

- **2009**: SiCrystal M&A
- **2011**: 4inch MP
- **2014**: 6inch MP

- **SiC-SBD**
 - Since 2010
- **SiC-DMOS**
 - Since 2010

- **Power module**
 - Since 2012

- **Nuremberg, Germany**
- **Fukuoka, JPN**
- **Kyoto, JPN**
- **Thailand**
- **KOREA**
Advantage of packages with driving sense

Reduced switching speed because L_S is common to gate-drive and power loop:

Benefits:
- L_S is no longer common to gate-drive-loop and main current path.
- Overall package inductance is much lower (TO-263-7L)
- Increased creepage (TO-247-4L)
Double pulse test set-up

TO-263-7L (DUT below board)

TO-247-4L (DUT below board)

<table>
<thead>
<tr>
<th>Ch</th>
<th>Signal</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$V_{DS,LS}$</td>
<td>PHVS 662-6 1000:1, 400 MHz</td>
</tr>
<tr>
<td>2</td>
<td>$V_{GS,LS}$</td>
<td>HVFO0103 – 40x tip (+CM filter)</td>
</tr>
<tr>
<td>3</td>
<td>$I_{S,LS}$</td>
<td>100mΩ coaxial shunt</td>
</tr>
<tr>
<td>4</td>
<td>$V_{DS,HS}$</td>
<td>TT-SI 9110, 1000:1</td>
</tr>
</tbody>
</table>
Switching loss of 40mΩ 1200V SiC MOSFETs (Gen 3)

The information shown here is provided by ROHM for your reference only. ROHM doesn’t guarantee any of the characteristics shown here.
Switching loss of 40mΩ 1200V SiC MOSFETs (Gen 3)

The information shown here is provided by ROHM for your reference only. ROHM doesn’t guarantee any of the characteristics shown here.
Switching loss of 40mΩ 1200V SiC MOSFETs (Gen 3)

The information shown here is provided by ROHM for your reference only. ROHM doesn’t guarantee any of the characteristics shown here.
Switching loss of 40mΩ 1200V SiC MOSFETs (Gen 3)

The information shown here is provided by ROHM for your reference only. ROHM doesn’t guarantee any of the characteristics shown here.
Package line-up extension

650V

<table>
<thead>
<tr>
<th>P/N</th>
<th>17mΩ</th>
<th>22mΩ</th>
<th>30mΩ</th>
<th>60mΩ</th>
<th>80mΩ</th>
<th>120mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-247N</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxAL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxALHR*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TO-247-4L</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxAR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TO-263-7L</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxAW7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxAW7xxx*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

1200V

<table>
<thead>
<tr>
<th>P/N</th>
<th>22mΩ</th>
<th>30mΩ</th>
<th>40mΩ</th>
<th>80mΩ</th>
<th>105mΩ</th>
<th>160mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-247N</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxKL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxKLHR*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TO-247-4L</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxKR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TO-263-7L</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxKW7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCT3xxxKW7xxx*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*AEC-Q101 qualified, exact P/N for SMD devices tbd

- ✓ In mass production
- ✔ Under development
- ✓ In mass production (new)

Schedule and development plan are subject to change without notice.
Application example: Totem Pole

Implementation

- ROHM 1 Ch Gate-Driven ICs
- 60mΩ 650V SiC MOSFETs
- Si SJ MOSFETs
- 60mΩ 650V SiC MOSFETs

Control Circuit

- EMI Filter
- RHOM Half-Bridge Gate-Driven
- Si SJ MOSFETs

Grid Emulator

- Sinus-filer
- DUT
- Power Analyser
- AC
- DC
- Fan
- Height: ca. 55mm
- Inductor
- EMI Filter
- Control Circuit

© 2019 ROHM Semiconductor GmbH
Application example: Totem Pole

Features:
- A compromise between compactness and accessibility
- Control: Based on the TI C2000 control card
- Current measurement: Hall sensor IC

THT Variante

SMD Variante

SiC MOSFETs

Si SJ MOSFETs

Inductor

Fan

Height: ca. 55mm

DC out

ca. 185 mm

EIM filter

ca. 153 mm

AC in

ca. 185 mm
Test results

- **Maximal Efficiency:** 98.5%

- **Maximal Power:**
 - 3.6 kW (THT)
 - 2.4 kW (SMD)

- Both present comparable electric Performance

- SMD variant needs better cooling to reach 3.6kW

Conditions: $V_{OUT} = 400V$, $f_{SW} = 100$ kHz, $T_{amb} = 25^\circ C$,

Power supply consumption has not bee considered for the calculation
Thermal results

SMD Variante
\((V_{\text{IN}} = 230V, V_{\text{OUT}} = 400V, P_{\text{OUT}} = 2.4 \text{ kW}) \)

→ SiC MOSFETs reach ca. 99°C
→ Cooling needs to be improved to reach \(P_{\text{OUT}} = 3.6 \text{ kW} \)

THT Variante
\((V_{\text{IN}} = 230V, V_{\text{OUT}} = 400V, P_{\text{OUT}} = 3.6 \text{ kW}) \)

→ SiC MOSFETs reach ca. 97°C
→ Max. \(P_{\text{OUT}} \) of 3.6 kW reached
Auxiliary power supplies for industrial applications

System
(PV inverter, DC/DC converter, battery charger, etc.)

- Auxiliary supply is separated from the main power path
- High voltage input
- Low voltage output
- Isolated

Today’s focus application

Today’s focus application
Typical circuit for industrial auxiliary supply

Flyback converter with 3-phase input

AC mains 3ph
\(V_{ac,in} = 210 \ldots 690 \text{V} \)

\(V_{dc,in} \approx 300 \ldots 1000 \text{V} \)

Reflected voltage from secondary side

\(V_{refl} \approx 100 \text{V} \)

\(V_{surge} \approx 200 \text{V} \)

(turn-off overshoot)

What is the max. voltage the MOSFET has to withstand?

\(V_{dc,in} + V_{refl} + V_{surge} = 1300 \text{V} \)

Device rated voltage: \(\geq 1500 \text{V} \)
Typical Si-based solutions

- High gate charge Q_g (high gate driving losses)
- High leakage current, especially at high temp.
- High conduction losses

1500V Si MOSFET

- e.g. 1500V, 6Ω

Series connection of 800V Si MOSFETs

- Gate driving circuit more complex
- Static voltage balancing network
- Larger space for the heat sink

Two-switch flyback topology

- Only overvoltage can be reduced, HV switches still needed
- Isolated gate driver & power supply for high side
- Larger space for the heat sink
Auxiliary power supply solution

SiC-based solution with 1700V MOSFET and single-switch flyback topology

- Single switch
- Isolated package
- Control IC BD7682FJ

Input: 300-900 Vdc
Output: 24 Vdc
Power: 100 W
Sw. Freq.: 90…120 kHz
Efficiency: 92% (300 Vdc), 90% (700 Vdc)

BD768xFJ evaluation board available

BD7682FJ_EVK_302
Auxiliary power supply solution

Efficiency

Output voltage stability

© 2019 ROHM Semiconductor GmbH

The information shown here is provided by ROHM for your reference only. ROHM doesn't guarantee any of the characteristics shown here.
AC/DC converter with built-in 1700 V SiC MOSFET

Eval. board BM2SCQ123T-EVK-001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>21.6</td>
<td>24.0</td>
<td>26.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Maximum Output Power</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td>W</td>
<td>I_{OUT} = 2 A</td>
</tr>
<tr>
<td>Output Current Range</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Stand-by Power</td>
<td>-</td>
<td>310</td>
<td>-</td>
<td>mW</td>
<td>I_{OUT} = 0 A</td>
</tr>
<tr>
<td>Efficiency</td>
<td>-</td>
<td>90</td>
<td>-</td>
<td>%</td>
<td>I_{OUT} = 2 A</td>
</tr>
<tr>
<td>Output Ripple Voltage</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>mVpp</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-10</td>
<td>+25</td>
<td>+65</td>
<td>℃</td>
<td></td>
</tr>
</tbody>
</table>

Package

TO220-6M

W (Typ) x D (Typ) x H (Max)
10.0 mm x 4.5 mm x 25.6 mm

BM2SCQ123T

Includes the 1700 V 4 A SiC MOSFET inside the package

- Quasi Resonant Operation
- TO220-6M Package
Summary

- Driving sense in both SMD and THT devices offer a substantial benefit for switching performance of fast SiC MOSFETs.

- Experimental results shows that Totem Pole PFC based on 60mΩ 650V SiC MOSFETs achieve an efficiency of 98.5%

- A 3.6kW Totem Pole PFC, with appropriate thermal design, can be use for OBCs applications, but also for industrial application.

- Combination of BD762xFJ and 1700V SiC MOSFET

 → **Simple** and **high performance** auxiliary supply solution