PowiGaN™: HV GaN For Mass Markets

Balu Balakrishnan, CEO, Power Integrations
December 2019
HV GaN Benefits

- **High Efficiency vs. Silicon for a given frequency of operation**
 - Near zero cross conduction losses
 - Very low capacitive switching losses relative to $R_{DS(ON)}$
 - Much smaller die size relative to Si for the same $R_{DS(ON)}$
 - Better switching performance than SiC

- **Fundamentally more cost-effective than SiC for <1200 V**
 - With potential for further cost reductions

- **Enables smaller, lighter & more efficient power supplies**
 - High efficiency at higher frequencies for smaller size
 - Low losses eliminate heat sink reducing weight & size
HV GaN Challenges

- **Tricky to drive**
 - Discrete GaN devices are very sensitive to drive voltage
 - Uncontrolled fast switching can cause EMI problems
 - Parasitics can cause VHF oscillation that can be destructive

- **Difficult to protect**
 - Protection circuits have to be faster than the device
 - Very difficult to achieve when devices are separately packaged

- **External current sensing negates the efficiency benefit**
 - Discrete designs use current sense resistors \geq the RDS(ON) of GaN switch!
 - Needed to provide sufficient voltage drop for fast current limit response

- **Continuous voltage rating of 650 V is needed for reliable Flyback operation**
 - Many HV GaN devices are rated at 480 V continuous - only good for HB circuits
 - Voltage spikes due to parasitics could be a problem even with HB circuits

RDSON = 120 mΩ
Rsense = 290 mΩ
The System Level PowiGaN Solution

- Proprietary GaN technology optimized for system level integration
- Co-packaged with controller to guarantee safe operation & ease of use
 - Close coupling greatly reduces parasitics
 - Driver carefully matched to the GaN transistor for safe switching and low EMI
 - Switching waveforms matched to Silicon equivalents
 - As easy to use as Silicon solution but, much higher efficiency
 - Controller + GaN operate from a single 5V rail
- Built in lossless current limit
 - Avoids loss of efficiency due to series current sense resistors
 - Provides very fast response for protecting the GaN transistor
- Rated at 650 V repetitive operation & 750 V non-repetitive for transients
 - Can use simple Flyback topology with external circuit identical to silicon counter parts
Integration is Key To Success Of PowiGaN

- **InnoSwitch3** combines both primary and secondary circuits
 - Very few components compared to discrete solutions—ease of use
- **Provides seamless transition from Silicon to GaN**
 - Circuit operation indistinguishable between Si or PowiGaN
 - Big difference: higher efficiency with PowiGaN

The Ultimate Flyback!

©2019 Power Integrations | www.power.com
Taming the GaN Through Integration

- Precisely matched gate drive prevents oscillation, reduces EMI
 - Reduces fast di/dt voltage overshoot

- PowiGaN switching waveforms indistinguishable from Silicon versions
 - No special EMI issues for PowiGaN

- Loss less current limit preserves the efficiency advantage
 - Also fast enough to protect PowiGaN
Seamless Transition From Silicon to PowiGaN

- RDS(ON) (Ω) – Typical (25 °C)
- Output Power (W)

Legend:
- RDS(ON) - Typical at 25° C
- Power (W) (90-264 VAC)
- Power (W) (PFC - 400 VDC)
InnoSwitch 3: Up to 100 W Without Heatsink!

<table>
<thead>
<tr>
<th>Part Number</th>
<th>230 VAC ± 15%</th>
<th>85 - 264 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adapter</td>
<td>Open Frame</td>
</tr>
<tr>
<td>INN3X74C</td>
<td>20 W</td>
<td>25 W</td>
</tr>
<tr>
<td>INN3X75C</td>
<td>25 W</td>
<td>30 W</td>
</tr>
<tr>
<td>INN3X76C</td>
<td>35 W</td>
<td>40 W</td>
</tr>
<tr>
<td>INN3X77C</td>
<td>40 W</td>
<td>45 W</td>
</tr>
<tr>
<td>INN3X78C</td>
<td>70 W</td>
<td>75 W</td>
</tr>
<tr>
<td>INN3X79C</td>
<td>80 W</td>
<td>85 W</td>
</tr>
<tr>
<td>INN3X70C</td>
<td>90 W</td>
<td>100 W</td>
</tr>
</tbody>
</table>
DER-747 (65 W, 20 V Adapter): Full-load efficiency is 95% at 230 VAC and 94% at 115 VAC
PowiGaN –Ready For Prime Time

- Compelling alternative to Si above ~30-50 W
- Higher efficiency – up to 95% using simple flyback topology
- No heat sink up to 100 W in a low profile surface mount package
- Enables much smaller & lighter adapters compared to silicon

Already used in many high volume applications
- Cell phone/Tablet adapters –both aftermarket (30 - 61 W) & inbox (45 W, 65 W)
- TVs, Lighting ballasts (LYTSwitch-6), Wall USB outlets for size/efficiency
- Also being designed in to appliances for efficiency & lack of heatsink

- More than 3 million PowiGaN-based devices sold-to-date!