SiC – Status update and future outlook
Semiconductor Solutions for Automotive

Jürgen Schuderer
ABB Corporate Research, Switzerland
Contents

ABB converter portfolio
Drivers for SiC in automotive
Trends towards powertrain integration
Advanced packaging technologies
Other WBG semiconductors
Conclusions
Applications for SiC devices

Power converters portfolio: From a few-watts to mega-watts

<table>
<thead>
<tr>
<th>Power supply and UPS</th>
<th>Solar inverter and EVCI</th>
<th>Drives and wind converter</th>
<th>STATCOM, FACTs, HVDC</th>
</tr>
</thead>
</table>

Large portfolio of power converters for different applications
Applications for SiC devices
Recently launched products with SiC semiconductors

- **BORDLINE**
 - 10 kW battery charger for rail traction
 - 1200V SiC MOSFETs
 - **Main driver**: Volume reduction (factor 10) by smaller passive components (transformers, inductors, capacitors, and coolers)

- **Solar PV**
 - 1-ph and 3-ph solar PV string inverters with MPPT control
 - 1200V and 1700V SiC diodes, SiC MOSFET discretes and SiC modules in boost and inverter stages
 - **Main driver**: Volume and weight reduction

- **EV charging**
 - 50 kW isolated DC fast charger
 - 1200V SiC modules replacing discrete ISOTOP IGBTs
 - Extended DC capability up to 1000V
 - **Main driver**: Improved efficiency at lower system cost & acoustic noise emissions

MPPT: Maximum power point tracking
IEA projected vehicle stock in 2030:
- 130 – 250 million passenger EV / LCV
- 1.5 – 4.5 million e-buses
- 1.0 – 2.5 million e-trucks

- Driven by regulations
- Likely to develop to the largest power semiconductor market of the future

- **Traction inverter** to drive electrical machine (highest potential market)
- **On-board battery charger and DC/DC converter** to support auxiliary systems
- **SiC of high interest** for all PE converters in the drivetrain
 → Reduce losses, increase switching frequency, reduce size

- **System integration** to minimize cost, space, cables, connectors & cooling loops
- **New materials and manufacturing technologies**: WBG devices, laser welding, thermoplastic welding, cold forging, ...
- **More sensors, fusion, analytics and control**: Adaptive, predictive, fault-tolerant, life-extending, self-learning, ...
Semiconductor Solutions for Automotive

Requirements for power semiconductor modules

Cost reduction
- Main driver and key development target
- Low-cost materials and interconnect technologies
- Processes for fast and automated volume production
- Powertrain system optimization, e.g., compromising component vs. system cost in drive cycle

Power density and integration
- Module design for mechanical integration into space-restricted inverters and engine compartments
 - Footprint reduction by current routing into 3D and by improved cooling
 - High-T operation of WBG devices
 - Elimination of mounting overhead on system level (screwing, clamping, …)

Reliability
- Understand physics-of-failure of new module innovations: Planar topside, new substrates, embedded power and heterogeneous integration
- Robustness margins fit-for-application in harsh environment (ambient temperature, vibrations, humidity, …)
- Different requirements for commercial vs. passenger EVs, e.g., 10 x lifetime
Semiconductor Solutions for Automotive

Key drivers for SiC semiconductors

Reduce costs

<table>
<thead>
<tr>
<th>Drive cycle analysis</th>
<th>RoadPak SiC</th>
<th>RoadPak Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant T_{inlet}</td>
<td>50°C</td>
<td>50°C</td>
</tr>
<tr>
<td>T_{max} during drive cycle</td>
<td>109°C</td>
<td>178°C</td>
</tr>
<tr>
<td>Switching losses</td>
<td>0.31 kWh</td>
<td>2.45 kWh</td>
</tr>
<tr>
<td>Conduction losses</td>
<td>0.63 kWh</td>
<td>1.36 kWh</td>
</tr>
<tr>
<td>3-phase module loss, 9.8 h E-truck profile</td>
<td>2.8 kWh</td>
<td>11.7 kWh</td>
</tr>
<tr>
<td>SiC battery saving</td>
<td>8.9 kWh</td>
<td>-</td>
</tr>
</tbody>
</table>

- ABB RoadPak in long-haul E-truck drive cycle → 9h 47min of driving
- SiC with < 4 times lower losses:
 → Save 8.9 kWh battery

Power density, reduce size

![Graph showing power density and switching frequency]

Increase reliability

- SiC with < 2 times ΔT_j, ΔT_{solder}:
 → Solder cycle life > ~ 30 times Si
- Advanced packaging to avoid de-rating for high-lifetime vehicles (trucks, buses)

Additional notes:

- $V_{\text{DC}} = 850$ V, $T_{\text{max}} = 175^\circ$C, $\text{mod} = 0.95$, $\text{cos}\psi = 0.85$, WEG coolant: 10 l/min, 60°C
Future Semiconductor Solutions for Automotive

Advanced powertrain integration

Machine-inverter integration

Advanced cooling

Diagnostics and fault tolerance

- **Cooling** = most important factor to determine output power for any motor
- **Stator** direct slot cooling and fluid winding head cooling vs. housing cooling
- **Rotor spray mist cooling**
- **Hollow shaft** and bearing cooling

→ Combined power electronics and machine cooling, e.g., modules in oil

<table>
<thead>
<tr>
<th>Cooling</th>
<th>$\Delta T_{j, \text{RoadPak}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEG 50/50</td>
<td>100%</td>
</tr>
<tr>
<td>Oil</td>
<td>121%</td>
</tr>
<tr>
<td>Oil w/o DBC</td>
<td>106%</td>
</tr>
<tr>
<td>Oil DSC w/o DBC</td>
<td>~ 75%</td>
</tr>
<tr>
<td>2-Φ DSC w/o DBC</td>
<td>~ 50%?</td>
</tr>
</tbody>
</table>

Source: Universitäts Karlsruhe

- **Fault prediction, detection, location and containment** enabled by on-board sensing, redundant architectures, re-routing and modified operation, e.g., for degraded or emergency operation for fail-safe vehicle stand-still
- Advanced sensing and multiphase machine approaches

Source: Schweizer

Source: TU Berlin

Source: Fraunhofer IISB
Future Semiconductor Solutions for Automotive
Advanced packaging technologies

Bonding
- Ag, Cu & Ni sintering
- Pressure-less sintering (T, IR, bare Cu, polymer content)
- Ultrasonic welding of terminals
- Pressure contacts
- Laser bonding

Topside interconnection
- Cu wire bonding
- Sintered top plates & clips
- Electroplated vias for embedding and thru-mold
- Topside substrates (DBC, PCB, flex-foil, LTCC, ...)
- 3D printed interconnects

Substrate & encapsulation
- Thick-metal ceramic, low-thickness Al₂O₃, and organic insulated substrates
- Chip-on-leadframe approaches
- Integrated substrate / baseplate / cooler solutions
- Transfer and compression molded high-T compounds

Cooling
- Module with integrated coolers
- Double-side cooling
- Microchannel cooling
- Immersion cooling
- Jet impingement

Source: WOLVERINE
Future Semiconductor Solutions for Automotive

Next generation semiconductors (besides Si IGBT)

<table>
<thead>
<tr>
<th>Wafer</th>
<th>Si SJ</th>
<th>SiC</th>
<th>GaN</th>
<th>Ga$_2$O$_3$</th>
<th>Diamond</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6", 8", 12"</td>
<td>4", 6", 8" demonstrated</td>
<td>4" - 8" GaN-on-Si (2" GaN-on-GaN)</td>
<td>2", 4" epi wafers</td>
<td>Small square samples ~ 1cm2</td>
<td>2" substrates</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Si SJ</th>
<th>SiC</th>
<th>GaN</th>
<th>Ga$_2$O$_3$</th>
<th>Diamond</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6", 8", 12"</td>
<td>4", 6", 8" demonstrated</td>
<td>4" - 8" GaN-on-Si (2" GaN-on-GaN)</td>
<td>2", 4" epi wafers</td>
<td>Small square samples ~ 1cm2</td>
<td>2" substrates</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Si SJ</th>
<th>SiC</th>
<th>GaN</th>
<th>Ga$_2$O$_3$</th>
<th>Diamond</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ MOSFET</td>
<td>Planar & trench MOSFET</td>
<td>HEMT</td>
<td>MOSFET (w/o inversion channel)</td>
<td>MOSFET (w/o inversion channel)</td>
<td>tbd (MOSFET)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key benefits</th>
<th>Si SJ</th>
<th>SiC</th>
<th>GaN</th>
<th>Ga$_2$O$_3$</th>
<th>Diamond</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature technology</td>
<td>Switching losses</td>
<td>Static losses</td>
<td>Very low losses (2DEG) (RF, OBC, DC/DC)</td>
<td>Static losses</td>
<td>Static losses</td>
<td>Static losses</td>
</tr>
<tr>
<td>Switching losses Body diode</td>
<td>Switching losses Body diode</td>
<td>Very low losses (2DEG) (RF, OBC, DC/DC)</td>
<td>Static losses</td>
<td>Very high λ_{th}</td>
<td>Static losses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Si SJ</th>
<th>SiC</th>
<th>GaN</th>
<th>Ga$_2$O$_3$</th>
<th>Diamond</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaching its limit</td>
<td>Switching loss ↑(T) Limited to ~ 650 V</td>
<td>Static loss ↑(T) Channel mobility</td>
<td>Ruggedness No body diode p-type activation</td>
<td>No p-type Low λ_{th}</td>
<td>Material availability n-type difficult</td>
<td>Material availability p-type difficult</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost potential</th>
<th>Si SJ</th>
<th>SiC</th>
<th>GaN</th>
<th>Ga$_2$O$_3$</th>
<th>Diamond</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Medium</td>
<td>Medium - Low</td>
<td>Medium - Low</td>
<td>Medium - Low</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>
Future Semiconductor Solutions for Automotive

Conclusions: SiC outlook - needs for the future

<table>
<thead>
<tr>
<th>SiC devices</th>
<th>SiC modules</th>
<th>SiC system design</th>
</tr>
</thead>
</table>

- **Improved performance** $R_{DSon} \times A$ at given robustness (V_{th} stability, GoX lifetime, cosmic ray, SOA and short-circuit)
- **Reduce device cost** by improved material quality & processing yield, larger wafer diameter and economies of scale
- **Research** to enable future step-change device designs, e.g., SJ, and to avoid expensive SiC substrates, e.g., SiC-on-Si?

- **Low-cost materials**, interconnect technologies and processes for automated volume production
- **Module design for mechatronics integration** into engine compartments, e.g., high-T operation, elimination of mounting overhead, immersion cooling, etc.

- **Holistic powertrain system optimization** (EM, thermal, reliability, costs)
- **Utilizing better modelling capability, simulation and virtual testing** to improve performance and shorten product cycles
- **Advanced control**, diagnostics and fault tolerance
- **Utilizing new manufacturing techniques**

- R_{DSon}: On-state resistance, V_{th}: Threshold voltage, GoX: Gate oxide, SOA: Safe operating area
- SJ: Super-Junction

Model predictive pulse pattern control